创造一种可以跟现在的锂离子电池竞争的固态电池的竞赛正在升温。锂离子电池无处不在:在你的手机、汽车、相机等等。自20世纪90年代首次亮相以来,它们已经成为能源存储的领导者。但它们有一个主要缺陷:安全。锂离子电池存在起火的倾向,尤其是在损坏或高温时。
南极熊导读:3D打印固态电池在2021年即将在德国量产!能量密度提高1倍,充电速度提高6倍!优先配套德国庞大的汽车制造业。宝马/奔驰/大众/奥迪/保时捷等厂商,在电动汽车时代有翻身的机会吗?
2021年1月,南极熊3D打印网获悉,瑞士公司Blackstone Resources的专有3D打印锂离子固态电池技术,取得了一系列重要的突破。它一直通过德国子公司Blackstone Technology GmbH投资于下一代电池技术。包括获得专利的3D打印技术和对电池批量生产的研究。
NPJ(Nano Particle Jetting)
它是如何工作的?
缺点:成本高,在打印大尺寸物体时容易发生翘曲,速度较慢。
纵观3D打印技术的发展史,最早可追溯至1984年由美国科学家Charles Hull发明的立体光固化成型技术(Stereolithography appearance,SLA)。随后又逐步发展出选择性激光烧结(Selective laser sintering, SLS)、选择性激光熔化(Selective laser melting, SLM)、微喷射粘结成型(Three dimensional printing and gluing, 3DP)等技术。
(图片由ECS提供—电化学学会,2019年)
据了解,研究团队先是开展了用全固态电池制作软性电解质膜的研究,制作了一个类似于软性隐形眼镜的玻璃膜。随后,他们将电解质膜中所含的氧化硅量减少一半,使其变成凝胶状。再与经过紫外线照射就会凝固的树脂混合在一起,最后用3D打印机塑造成型。
图片来自6K公司
《3D打印材料》
还记得于2012年上映,成龙主演的电影《十二生肖》吗?其中一个片段以非常形象的手法展现了一种对三维兽首进行扫描并复制重现的未来技术概念——3D打印。而在现实世界,科技前进的步伐是不可阻挡的。
图1:3D打印技术
3D打印技术又称增材制造(Additive manufacturing),是一种以数字模型文件为基础,将可粘合材料逐层叠加以构建现实三维物体的技术。作为“决定未来经济的12大颠覆技术”之一和第三次工业革命的引擎,3D打印标志着从传统制造迈向智能制造的巨大产业变革,引发了新的技术革命浪潮。
与传统制造技术相比,3D打印技术具有“去模具、减废料和降库存”等特点,在生产上可以优化结构、节约材料和节省能源,极大提高制造效率,实现“设计引导制造”的创新理念。
图2:通用3D打印流程
图源:Zhang et al. ACM Trans. Multimedia Comput. Commun. Appl. 2015, 12, 2
发展历程
3D打印方法分类
一、材料挤出型
Material extrusion
二、光聚合成型
Vat photopolymerization
三、定向能量沉积型
Directed energy deposition
四、材料喷射型
Material jetting
2D喷墨打印机的三维进化版。材料喷射可分为连续材料喷射(Continuous material jetting, CMJ)、纳米颗粒喷射(Nanoparticles jetting, NPJ)和按需滴落(Drop on-demand, DOD)。其基本原理是使用带电偏转板和电磁场,将喷射出的材料精确地定位在打印平台上,并利用紫外光源进行固化成型。材料喷射与上文中的立体光刻成型(SLA)非常相似,不同在于前者可以一次喷射出数百个微小液滴,而SLA则是在整桶树脂中,通过激光选择性地逐点固化。喷射的光敏液滴材料则包含聚合物和塑料,如丙烯腈丁二烯苯乙烯ABS和聚丙烯PP等。
五、粘合剂喷射成型
Binder Jetting
也称微喷射粘结成型(Three dimensional printing and gluing, 3DP),是通过粘合剂喷射来实现粉末成型。主要过程是将陶瓷或聚合物等粉末状材料装入容器中,使用喷墨打印头将粘合剂喷射至粉末中,如同沙子与水混合会形成更坚固的结构,一层粉末会在选择区域内发生粘合,重复这个过程,下一层粉末会与上一层粉层通过粘合剂的渗透结合为一体,从而层层堆叠成型。当使用材料是金属和陶瓷材料时,需要通过高温烧结去除粘合剂并实现粉末颗粒间的冶金结合,使成品具有一定的强度与密度。
六、粉末床熔融成型
Powder bed fusion
这是另一种基于粉末床的方法,主要用于金属部件的打印制造。与前面所述的打印方法不同,粉末床熔融不涉及沉积粘合剂来实现打印,主要代表有选择性激光烧结(Selective laser sintering, SLS)、选择性激光熔化(Selective laser melting, SLM)和电子束选区熔化(Electron-beam selective melting, EBSM)等。粉末床熔融的过程大体为,使用铺粉辊将存放在料斗和贮料器内的粉末材料均匀地涂覆在打印平台表面上,在真空环境下,利用高功率激光或电子束等高能束来熔化和烧结粉末,使之结合在一起,随后再涂覆一层粉末进行下一层烧结,直至形成整个实体。其中,电子束选区熔化会对粉末床进行预热,整个腔室温度最高可达上千度,极大程度降低成形零件的残余应力;SLS需要添加额外的粘结剂,如低熔点金属或者树脂材料等。
七、片材层压型
Sheet lamination
应用实例
图3:深蓝火箭试验飞行
在航空和能源领域,近期,美国Arris Composites与空中客车公司合作在3D打印碳纤维复合材料市场发力批量制造,打造轻量型客舱支架;索尔维与OEM 9T Labs合作将3D打印碳纤维增强塑料部件引入量产,用于生产航空、自动化和石油天然气等行业所需的中小尺寸零部件。
在制造医疗假体方面的发展则不仅仅局限在骨科、假耳等,还包括眼部假体,2021年11月,德国Fraunhofer弗劳恩霍夫研究所在3D打印假眼临床应用方面的突破表明3D打印制造医疗假体的商业化趋势。
图4:3D打印仿生眼球
1. Jake Port. How does 3D printing work? , cosmosmagazine, 7 December 2021
2. 《3D打印与工业制造》——机械工业出版社
3. 2021年3D打印行业深度研究报告——西部证券
转载内容仅代表作者观点
不代表中科院物理所立场